Let's rewrite the inequality
x^3+3x^2-4<0x3+3x2−4<0
We must factorise the LHS
Let f(x)=x^3+3x^2-4f(x)=x3+3x2−4
The domain of f(x)f(x) is D_f(x)=RR
f(1)=1+3-4=0
So, (x-1) is a factor
To find the other factors, we do a long division
color(white)(aaaa)x^3+3x^2color(white)(aaaa)-4color(white)(aaaa)∣x-1
color(white)(aaaa)x^3-x^2color(white)(aaaa)#color(white)(aaaaaaaa)∣#x^2+4x+4
color(white)(aaaa)0+4x^2color(white)(aaaa)#color(white)(aaaaaaaa)#
color(white)(aaaaaa)+4x^2-4x
color(white)(aaaaaaaa)+0+4x-4
color(white)(aaaaaaaaaaaa)+4x-4
color(white)(aaaaaaaaaaaaa)+0-0
Therefore,
x^3+3x^2-4=(x-1)(x^2+4x+4)=(x-1)(x+2)^2
So, we can make the sign chart
color(white)(aaaa)xcolor(white)(aaaa)-oocolor(white)(aaaaaa)-2color(white)(aaaaaaaa)1color(white)(aaaaaaaa)+oo
color(white)(aaaa)(x+2)^2color(white)(aaaa)+color(white)(aaa)0color(white)(aaaa)+color(white)(aaaa)+
color(white)(aaaa)x-1color(white)(aaaaaa)-color(white)(aaa)0color(white)(aaaa)-color(white)(aaaa)+
color(white)(aaaa)f(x)color(white)(aaaaaaa)-color(white)(aaa)0color(white)(aaaa)-color(white)(aaaa)+
Therefore,
f(x)<0 when x in ] -oo,-2[uu] -2,1 [