How do you solve x^3+3x^2<4x3+3x2<4 using a sign chart?

1 Answer
Jan 19, 2017

The answer is x in ] -oo,-2[uu] -2,1 [x],2[]2,1[

Explanation:

Let's rewrite the inequality

x^3+3x^2-4<0x3+3x24<0

We must factorise the LHS

Let f(x)=x^3+3x^2-4f(x)=x3+3x24

The domain of f(x)f(x) is D_f(x)=RR

f(1)=1+3-4=0

So, (x-1) is a factor

To find the other factors, we do a long division

color(white)(aaaa)x^3+3x^2color(white)(aaaa)-4color(white)(aaaa)x-1

color(white)(aaaa)x^3-x^2color(white)(aaaa)#color(white)(aaaaaaaa)∣#x^2+4x+4

color(white)(aaaa)0+4x^2color(white)(aaaa)#color(white)(aaaaaaaa)#

color(white)(aaaaaa)+4x^2-4x

color(white)(aaaaaaaa)+0+4x-4

color(white)(aaaaaaaaaaaa)+4x-4

color(white)(aaaaaaaaaaaaa)+0-0

Therefore,

x^3+3x^2-4=(x-1)(x^2+4x+4)=(x-1)(x+2)^2

So, we can make the sign chart

color(white)(aaaa)xcolor(white)(aaaa)-oocolor(white)(aaaaaa)-2color(white)(aaaaaaaa)1color(white)(aaaaaaaa)+oo

color(white)(aaaa)(x+2)^2color(white)(aaaa)+color(white)(aaa)0color(white)(aaaa)+color(white)(aaaa)+

color(white)(aaaa)x-1color(white)(aaaaaa)-color(white)(aaa)0color(white)(aaaa)-color(white)(aaaa)+

color(white)(aaaa)f(x)color(white)(aaaaaaa)-color(white)(aaa)0color(white)(aaaa)-color(white)(aaaa)+

Therefore,

f(x)<0 when x in ] -oo,-2[uu] -2,1 [