x^3-3x^2-9x+27
can be factored as
color(white)("XXX")x^2(x-3)-9(x-3)
color(white)("XXX")(x^2-9)(x-3)
color(white)("XXX")(x+3)(x-3)(x-3)
If x < -3
color(white)("XXX")underbrace(underbrace(""(x-3))_("neg.")*underbrace(""(x-3))_("neg.")*underbrace(""(x+3))_("neg."))
color(white)("XXXXXXXX")< 0
If -3 < x < +3
color(white)("XXX")underbrace(underbrace(""(x-3))_("neg.")*underbrace(""(x-3))_("neg.")*underbrace(""(x+3))_("pos."))
color(white)("XXXXXXXX")> 0
If x > +3
color(white)("XXX")underbrace(underbrace(""(x-3))_("pos.")*underbrace(""(x-3))_("pos.")*underbrace(""(x+3))_("pos."))
color(white)("XXXXXXXX")> 0
Note if x=-3 or x=+3 the result = 0
So the only case for
color(white)("XXX")x^3-3x^2-9x+27 < 0
is
color(white)("XXX")x < -3
graph{x^3-3x^2-9x+27 [-65, 66.65, -31.1, 34.75]}