Let's rewrite the inequality
x^3-5x^2 < x-5
x^3-5x^2-x+5<0
Let f(x)=x^3-5x^2-x+5
f(1)=1-5-1+5 =0
so,
(x-1) is a factor of f(x)
f(-1)=-1-5+1+5=0
so,
(x+1) is a factor of f(x)
So,
(x+1)(x-1)=x^2-1 is a factor of f(x)
We perform a long division to find the 3rd factor
color(white)(aaaa)x^3-5x^2-x+5color(white)(aaaa)|x^2-1
color(white)(aaaa)x^3color(white)(aaaaaa)-xcolor(white)(aaaaaaaa)|x-5
color(white)(aaaa)0-5x^2color(white)(aaa)0+5
color(white)(aaaaaa)-5x^2color(white)(aaaaa)+5
color(white)(aaaaaaaaa)0color(white)(aaaaa)+0
Therefore,
f(x)=(x+1)(x-1)(x-5)
Let's build the sign chart
color(white)(aaaa)xcolor(white)(aaaaa)-oocolor(white)(aaaa)-1color(white)(aaaa)1color(white)(aaaaa)5color(white)(aaaaa)+oo
color(white)(aaaa)x+1color(white)(aaaaaa)-color(white)(aaaa)+color(white)(aaaa)+color(white)(aaaa)+
color(white)(aaaa)x-1color(white)(aaaaaa)-color(white)(aaaa)-color(white)(aaaa)+color(white)(aaaa)+
color(white)(aaaa)x-5color(white)(aaaaaa)-color(white)(aaaa)-color(white)(aaaa)-color(white)(aaaa)+
color(white)(aaaa)f(x)color(white)(aaaaaaa)-color(white)(aaaa)+color(white)(aaaa)-color(white)(aaaa)+
Therefore,
f(x)<0 when x in ]-oo, -1 [uu]1,5[