Let us first factorize x^4-10x^2+9x4−10x2+9.
x^4-10x^2+9=x^4-9x^2-x^2+9x4−10x2+9=x4−9x2−x2+9
= x^2(x^2-9)-1(x^2-9)= (x^2-9)(x^2-1))x2(x2−9)−1(x2−9)=(x2−9)(x2−1))
= (x+3)(x-3)(x+1)(x-1)(x+3)(x−3)(x+1)(x−1)
Hence we have to solve the inequality
(x+3)(x-3)(x+1)(x-1)>=0(x+3)(x−3)(x+1)(x−1)≥0
From this we know that the product (x+3)(x-3)(x+1)(x-1)(x+3)(x−3)(x+1)(x−1) has to be zero or positive. It is apparent that sign of binomials (x+3)(x+3), (x+1)(x+1), (x-1)(x−1) and (x-3)(x−3) will change around the values -3−3. -1−1, 11 and 33 respectively. In sign chart we divide the real number line using these values, i.e. below -3−3, between -3−3 and -1−1, between -1−1 and 11, between 11 and 33 and above 33 and see how the sign of (x+3)(x-3)(x+1)(x-1)(x+3)(x−3)(x+1)(x−1) changes.
Sign Chart
color(white)(XXXXXXXX)-3color(white)(XXXX)-1color(white)(XXXX)1color(white)(XXXX)3XXXXXXXX−3XXXX−1XXXX1XXXX3
(x+3)color(white)(XX)-ive color(white)(XX)+ive color(white)(XXX)+ive color(white)(XX)+ive color(white)(XX)+ive(x+3)XX−iveXX+iveXXX+iveXX+iveXX+ive
(x+1)color(white)(XX)-ive color(white)(XX)-ive color(white)(XXX)+ive color(white)(XX)+ive color(white)(XX)+ive(x+1)XX−iveXX−iveXXX+iveXX+iveXX+ive
(x-1)color(white)(XX)-ive color(white)(XX)-ive color(white)(XXX)-ive color(white)(XX)+ive color(white)(XX)+ive(x−1)XX−iveXX−iveXXX−iveXX+iveXX+ive
(x-3)color(white)(XX)-ive color(white)(XX)-ive color(white)(XXX)-ive color(white)(XX)-ive color(white)(XX)+ive(x−3)XX−iveXX−iveXXX−iveXX−iveXX+ive
x^4-10x^2+9x4−10x2+9
color(white)(XXXXXX)+ive color(white)(Xx)-ive color(white)(XXX)+ive color(white)(XX)-ive color(white)(XX)+iveXXXXXX+iveXx−iveXXX+iveXX−iveXX+ive
It is observed that x^4-10x^2+9 >= 0x4−10x2+9≥0
when either -oo <= x <= -3−∞≤x≤−3 or -1 <= x <= 1−1≤x≤1, or 3 <= x <= oo3≤x≤∞, which is the solution for the inequality.
In interval notation, this can be written as [-oo,-3]uu[-1,1]uu[3,oo][−∞,−3]∪[−1,1]∪[3,∞]