How do you solve x^4+35x^2-36>=0x4+35x2360?

1 Answer
Jul 21, 2016

x in (-oo,-1]uu[1,oo)x(,1][1,), or, x in RR-(-1,1)

Explanation:

x^4+35x^2-36>=0

rArr(x^2-1)(x^2+36)>=0

Since, x^2+36>0 rArrx^2-1>=0rArr (x-1)(x+1)>=0

x^2-1=0 iff x=+-1.....(1)

Hence, we need to solve only

(x^2-1)>0, i.e., (x-1)(x+1)>0

:.[(x-1)>0, &, (x+1)>0]..............Case (1), or,

[(x-1)<0, &, (x+1)<0].................Case(2).

Case (1) :-

(x-1)>0, &, (x+1)>0 rArr x>1, &, x> -1

rArrx in (1,oo) & x in (-1,oo)

rArr x in (1,oo) nn (-1,oo)

rArr x in (1,oo)

Case (2) :-

Working on the same lines as above [in Case (1)], in this case, we get

#x<-1, i.e., x in (-oo,-1)

Combining these Cases with (1),

we get, x in (-oo,-1), or, x in (1,oo), or, x=+-1

i.e., x in (-oo,-1]uu[1,oo), or, x in RR-(-1,1)

Hope, this is Helpful! Enjoy Maths!