You cannot do crossing over
x/(x+2)>=2
x/(x+2)-2>=0
(x-2(x+2))/(x+2)>=0
(x-2x-4)/(x+2)>=0
(-x-4)/(x+2)>=0
Let f(x)=(-x-4)/(x+2)
We can do a sign chart
color(white)(aaaa)xcolor(white)(aaaaaa)-oocolor(white)(aaaaa)-4color(white)(aaaaaaa)-2color(white)(aaaaa)+oo
color(white)(aaaa)-x-4color(white)(aaaaa)+color(white)(aaaa)0color(white)(aaa)-color(white)(aa)∥color(white)(aa)-
color(white)(aaaa)x+2color(white)(aaaaaaa)-color(white)(aaaa)#color(white)(aaa)-#color(white)(aaa)∥color(white)(aa)+
color(white)(aaaa)f(x)color(white)(aaaaaaaa)-color(white)(aaaa)#color(white)(aaa)+#color(white)(aaa)∥color(white)(aa)-
Therefore,
f(x)>=0, when x in [-4, 2[