How do you solve x=y+3x=y+3 and x-y^(2)=3yxy2=3y using substitution?

1 Answer
Jun 19, 2018

Shown below

Explanation:

x = y+3" " color(red)((1) x=y+3 (1)

x - y^2 = 3y " " color(blue)((2) xy2=3y (2)

Substitute color(red)((1) (1) into color(blue)((2) (2)

=> (y+3 ) - y^2 = 3y (y+3)y2=3y

=> y^2 +2y -3 = 0 y2+2y3=0

=> ( y-1)(y+3) = 0 (y1)(y+3)=0

=> y = 1 , y =-3 y=1,y=3

Using color(red)((1) (1)

y=1 => x = 1+3 = 4 y=1x=1+3=4

y =-3 => x = -3 + 3 = 0 y=3x=3+3=0

Hence the solutions are x = 4 , y=1 x=4,y=1 and x = 0 , y=-3x=0,y=3

In coordinate form:

(4,1) (4,1) and (0,-3) (0,3)