How do you solve y=lny' given y(2)=0?
1 Answer
Dec 6, 2016
Explanation:
A am assuming that
y=lny'
:. ln(dy/dx)=y
:. dy/dx=e^y
We now have a first order separable differential equation, so we can separate the variables to get:
\ \ \ \ \ \ int 1/e^ydy = int dx
:. int e^-ydy = int dx
We can now integrate to get:
-e^-y = x+c
:. e^-y = -x-c
Using
e^0=-2+c
:. x=1+2=3
CHECK
y = ln(1/(3-x))
:. y(2) = ln(1/1)=0 , so the initial condition is met
And
dy/dx = 1/((1/(3-x))) * (-(3-x)^-2) (-1)
:. dy/dx = (3-x) * 1/(3-x)^2
:. dy/dx = 1/(3-x)
:. ln(dy/dx) = y , so the DE condition is met
Confirming our solution is correct.