How do you solve y=lny' given y(2)=0?

1 Answer
Dec 6, 2016

y = ln(1/(3-x))

Explanation:

A am assuming that y is a function of x, ie y=f(x)

y=lny'
:. ln(dy/dx)=y
:. dy/dx=e^y

We now have a first order separable differential equation, so we can separate the variables to get:

\ \ \ \ \ \ int 1/e^ydy = int dx
:. int e^-ydy = int dx

We can now integrate to get:

-e^-y = x+c
:. e^-y = -x-c

Using y(2)=0 =>

e^0=-2+c
:. x=1+2=3

:. e^-y = 3-x
:. -y = ln(3-x)
:. y = -ln(3-x)
:. y = ln(1/(3-x))

CHECK

y = ln(1/(3-x))
:. y(2) = ln(1/1)=0, so the initial condition is met

And

dy/dx = 1/((1/(3-x))) * (-(3-x)^-2) (-1)
:. dy/dx = (3-x) * 1/(3-x)^2
:. dy/dx = 1/(3-x)
:. ln(dy/dx) = y, so the DE condition is met

Confirming our solution is correct.