We have y'=-xy+sqrty or dy/dx=y^(1/2)-xy.
Let v=y^(1/2) and (dv)/dx=1/2y^(-1/2)dy/dx
Now
y^(-1/2)dy/dx=1-xy^(1/2)=1-vx
so
(dv)/dx=1/2(1-vx)=1/2-1/2vx
rArr(dv)/dx+1/2vx=1/2
This is now a linear first-order ordinary differential equation of the form
(dv)/(dx)+vP(x)=Q(x)
We solve this using an integrating factor:
mu=e^(int1/2xdx)=e^(1/4x^2)
So the general solution is
ve^(1/4x^2)=int1/2e^(1/4x^2)dx=1/2(sqrtpi "erfi"(1/2x)+"c")
Solving for v
v=1/2e^(-1/4x^2)(sqrtpi"erfi"(1/2x)+"c")
But v=sqrty so
sqrty=1/2e^(-1/4x^2)(sqrtpi"erfi"(1/2x)+"c")
and
y=1/4e^(-1/2x^2)(sqrtpi"erfi"(1/2x)+"c")^2
Now, we have the condition y(0)=0
So
y(0)=1/4e^0(sqrtpi"erfi"(0/2)+"c")^2=0
rArr1/4c^2=0rArrc=0
So the final solution is
y=y(0)=1/4pie^(-1/2x^2)"erfi"^2(1/2x)