How do you solve y'=-xy+sqrty given y(0)=0?

1 Answer
Apr 1, 2018

y=y(0)=1/4pie^(-1/2x^2)"erfi"^2(1/2x)

Explanation:

We have y'=-xy+sqrty or dy/dx=y^(1/2)-xy.

Let v=y^(1/2) and (dv)/dx=1/2y^(-1/2)dy/dx

Now

y^(-1/2)dy/dx=1-xy^(1/2)=1-vx

so

(dv)/dx=1/2(1-vx)=1/2-1/2vx

rArr(dv)/dx+1/2vx=1/2

This is now a linear first-order ordinary differential equation of the form

(dv)/(dx)+vP(x)=Q(x)

We solve this using an integrating factor:

mu=e^(int1/2xdx)=e^(1/4x^2)

So the general solution is

ve^(1/4x^2)=int1/2e^(1/4x^2)dx=1/2(sqrtpi "erfi"(1/2x)+"c")

Solving for v

v=1/2e^(-1/4x^2)(sqrtpi"erfi"(1/2x)+"c")

But v=sqrty so

sqrty=1/2e^(-1/4x^2)(sqrtpi"erfi"(1/2x)+"c")

and

y=1/4e^(-1/2x^2)(sqrtpi"erfi"(1/2x)+"c")^2

Now, we have the condition y(0)=0

So

y(0)=1/4e^0(sqrtpi"erfi"(0/2)+"c")^2=0

rArr1/4c^2=0rArrc=0

So the final solution is

y=y(0)=1/4pie^(-1/2x^2)"erfi"^2(1/2x)