How do you take the derivative of tan^3 (3x-1)?

1 Answer
Apr 30, 2018

9tan^2(3x-1)sec^2(3x-1)

Explanation:

"differentiate using the "color(blue)"chain rule"

"given "y=f(g(x))" then"

dy/dx=f'(g(x))xxg'(x)larrcolor(blue)"chain rule"

"here "y=tan^3(3x-1)=(tan(3x-1))^3

rArrdy/dx=3(tan(3x-1))^2xxd/dx(tan(3x-1))

color(white)(rArrdy/dx)=3tan^2(3x-1)xxsec^2(3x-1)xxd/dx(3x-1)

color(white)(rArrdy/dx)=9tan^2(3x-1)sec^2(3x-1)