How do you take the derivative of y=tan^2(2x)?

1 Answer
Aug 28, 2015

Use the power rule, the derivative of tangent and the chain rule (twice).

Explanation:

y=tan^2(2x)

First, remember the convention for trigonometric functions:

y=tan^2(2x) = (tan(2x))^2

So the outermost function is the square. Use the power and chain rules to get:

dy/dx = 2(tan(2x)) * d/dx(tan(2x))

= 2tan(2x) * sec^2(2x) * d/dx(2x)

= 2tan(2x) * sec^2(2x) * (2)

= 4tan(2x)sec^2(2x)