How do you use find the zeroes of f(x)=x^4-4x^2-45?

1 Answer
Aug 13, 2016

f(x) has zeros: 3, -3, sqrt(5)i, -sqrt(5)i

Explanation:

Treat as a quadratic in x^2 then use the difference of squares identity:

a^2-b^2 = (a-b)(a+b)

Note that 9*5=45 and 9-5=4

Hence:

x^4-4x^2-45

=(x^2-9)(x^2+5)

=(x^2-3^2)(x^2-(sqrt(5)i)^2)

=(x-3)(x+3)(x-sqrt(5)i)(x+sqrt(5)i)

Hence zeros:

3, -3, sqrt(5)i, -sqrt(5)i