How do you use Riemann sums to evaluate the area under the curve of # f(x) = 4 sin x# on the closed interval [0, 3pi/2], with n=6 rectangles using right endpoints?

2 Answers

Use your calculator.

Explanation:

#4 sin frac{3 pi}{12} * frac{3 pi}{12}#
#+ 4 sin frac{2 * 3 pi}{12} * frac{3 pi}{12}#
#+ 4 sin frac{3 * 3 pi}{12} * frac{3 pi}{12}#
#+ 4 sin frac{4 * 3 pi}{12} * frac{3 pi}{12}#
#+ 4 sin frac{5 * 3 pi}{12} * frac{3 pi}{12}#
#+ 4 sin frac{6 * 3 pi}{12} * frac{3 pi}{12}#

Jul 7, 2017

# R RS = 1.355 #

Explanation:

We have:

# f(x) = 4sinx #

We want to calculate over the interval #[0,(3pi)/2]# with #5# strips; thus:

# Deltax = ((3pi)/2-0)/6 = (3pi)/12#

Note that we have a fixed interval (strictly speaking a Riemann sum can have a varying sized partition width). The values of the function are tabulated as follows;

enter image source here

Right Riemann Sum

# R RS = sum_(r=1)^4 f(x_i)Deltax_i #
# " " = 0.1309 * (0.5221 + 1.0353 + 1.5307 + 2 + 2.435 + 2.8284)#
# " " = 0.1309 * (10.3516)#
# " " = 1.355 #

Actual Value

For comparison of accuracy:

# Area = int_0^((3pi)/12) \ 4sinx \ dx #
# " " = [-4cosx]_0^((3pi)/12) #
# " " = -4[cosx]_0^((3pi)/12) #
# " " = -4(cos ((3pi)/12)-cos0) #
# " " = -4(sqrt(2)/2-1)#
# " " = 1.1715#