How do you use Riemann sums to evaluate the area under the curve of #f(x) = (e^x) − 5# on the closed interval [0,2], with n=4 rectangles using midpoints?

1 Answer
May 6, 2018

the answer
#S_p=-3.67701446661601#

Explanation:

The sketch of our function #f(x) = (e^x) − 5#

graph{e^x-5 [-16.02, 16.02, -8.01, 8.01]}

the width

#width=(2-0)/4=1/2#

The midpoints

#(0+1/2)/2=1/4#
#(1/2+1)/2=3/4#
#(1+3/2)/2=5/4#
#(3/2+2)/2=7/4#

now find the high
#f(1/4)=-3.71597458331226#
#f(3/4)=-2.88299998338733#
#f(5/4)=-1.50965704253816#
#f(7/4)=0.75460267600573#

The sketch of our function with midpoints

enter image source here

calculate Riemann sum

#S_p=width*high#

#S_p=(1/2)[-3.71597458331226-2.88299998338733-1.50965704253816+0.75460267600573]#

#S_p=-3.67701446661601#