How do you use Riemann sums to evaluate the area under the curve of f(x)=(ex)5 on the closed interval [0,2], with n=4 rectangles using midpoints?

1 Answer
May 6, 2018

the answer
Sp=3.67701446661601

Explanation:

The sketch of our function f(x)=(ex)5

graph{e^x-5 [-16.02, 16.02, -8.01, 8.01]}

the width

width=204=12

The midpoints

0+122=14
12+12=34
1+322=54
32+22=74

now find the high
f(14)=3.71597458331226
f(34)=2.88299998338733
f(54)=1.50965704253816
f(74)=0.75460267600573

The sketch of our function with midpoints

enter image source here

calculate Riemann sum

Sp=widthhigh

Sp=(12)[3.715974583312262.882999983387331.50965704253816+0.75460267600573]

Sp=3.67701446661601