How do you use sintheta=1/3sinθ=13 to find costhetacosθ?

1 Answer
Mar 9, 2017

costheta=sqrt8/3cosθ=83

Explanation:

sintheta="opp"/"hyp"sinθ=opphyp, in this case 1/313.

Given these values, we can work out the "adj"adj side of our imaginary triangle to work out costhetacosθ which equals "adj"/"hyp"adjhyp.

"adj"=sqrt("hyp"^2-"opp"^2)-sqrt(3^2-1^2)=sqrt8adj=hyp2opp23212=8

costheta="adj"/"hyp"=sqrt8/3cosθ=adjhyp=83.

Another way we can work this out is using the trigonometric identity:

sin^2A+cos^2A-=1sin2A+cos2A1

cosA-=sqrt(1-sin^2A)cosA1sin2A

costheta=sqrt(1-(1/3)^2)=sqrt(8/9)=sqrt8/3cosθ=1(13)2=89=83