How do you use the Binomial theorem to expand (4-5i)^3(45i)3?

1 Answer
Jul 5, 2017

(4-5i)^3 = -236-115i(45i)3=236115i

Explanation:

We know (a+b)^n= nC_0 a^n*b^0 +nC_1 a^(n-1)*b^1 + nC_2 a^(n-2)*b^2+..........+nC_n a^(n-n)*b^n

Here a=4,b=-5i,n=3 We know, nC_r = (n!)/(r!*(n-r)!
:.3C_0 =1 , 3C_1 =3, 3C_2 =3,3C_3 =1 ; i^2=-1 ,i ^3 = -i

:.(4-5i)^3 = 4^3+3*4^2*(-5i) +3*4*(-5i)^2+(-5i)^3 or

(4-5i)^3 = 64-240i+300i^2-125i^3 or

(4-5i)^3 = 64-240i-300+125i or

(4-5i)^3 = -236-115i [Ans]