How do you use the definition of a derivative to find the derivative of (2/sqrt x)?

1 Answer
Mar 3, 2016

f'(x)=1/(xsqrtx)=1/x^(3/2)

Explanation:

The limit definition of a derivative states that for a function f(x), its derivative is

f'(x)=lim_(hrarr0)(f(x+h)-f(x))/h

Here, f(x)=2/sqrtx, so

f'(x)=lim_(hrarr0)(2/sqrt(x+h)-2/sqrtx)/h

Multiply the entire fraction by sqrt(x+h)sqrtx.

f'(x)=lim_(hrarr0)(2/sqrt(x+h)-2/sqrtx)/h((sqrt(x+h)sqrtx)/(sqrt(x+h)sqrtx))

f'(x)=lim_(hrarr0)(2sqrtx-2sqrt(x+h))/(hsqrt(x+h)sqrtx)

f'(x)=lim_(hrarr0)(2(sqrtx-sqrt(x+h)))/(hsqrt(x+h)sqrtx)

Multiply by the conjugate of the term in the numerator.

f'(x)=lim_(hrarr0)(2(sqrtx-sqrt(x+h)))/(hsqrt(x+h)sqrtx)((sqrtx+sqrt(x+h))/(sqrtx+sqrt(x+h)))

f'(x)=lim_(hrarr0)(2(x-(x-h)))/(hsqrt(x+h)sqrtx(sqrtx+sqrt(x+h)))

f'(x)=lim_(hrarr0)(2h)/(hsqrt(x+h)sqrtx(sqrtx+sqrt(x+h)))

f'(x)=lim_(hrarr0)2/(sqrt(x+h)sqrtx(sqrtx+sqrt(x+h)))

Evaluate the limit by plugging in 0 for h.

f'(x)=2/(sqrt(x+0)sqrtx(sqrtx+sqrt(x+0)))

f'(x)=2/(sqrtxsqrtx(sqrtx+sqrtx)

f'(x)=2/(x(2sqrtx))

f'(x)=1/(xsqrtx)=1/x^(3/2)