How do you use the definition of a derivative to find the derivative of 3x^2-5x+2?

1 Answer
Feb 6, 2016

6x-5

Explanation:

The limit definition of a derivative states that the derivative of the function f(x) is

f'(x)=lim_(hrarr0)(f(x+h)-f(x))/h

Here, since f(x)=3x^2-5x+2, we see that f(x+h)=3(x+h)^2-5(x+h)+2.

Thus,

f'(x)=lim_(hrarr0)(3(x+h)^2-5(x+h)+2-(3x^2-5x+2))/h

Distribute terms in the numerator.

f'(x)=lim_(hrarr0)(3(x^2+2xh+h^2)-5x-5h+2-3x^2+5x-2)/h

f'(x)=lim_(hrarr0)(3x^2+6xh+3h^2-5x-5h+2-3x^2+5x-2)/h

Cancel terms.

f'(x)=lim_(hrarr0)(6xh+3h^2-5h)/h

Factor an h.

f'(x)=lim_(hrarr0)(h(6x+3h-5))/h

f'(x)=lim_(hrarr0)6x+3h-5

The limit can be be found by plugging in 0 for h.

f'(x)=6x+3(0)-5

f'(x)=6x-5