How do you use the definition of a derivative to find the derivative of #3x^2-5x+2#?
1 Answer
Feb 6, 2016
Explanation:
The limit definition of a derivative states that the derivative of the function
#f'(x)=lim_(hrarr0)(f(x+h)-f(x))/h#
Here, since
Thus,
#f'(x)=lim_(hrarr0)(3(x+h)^2-5(x+h)+2-(3x^2-5x+2))/h#
Distribute terms in the numerator.
#f'(x)=lim_(hrarr0)(3(x^2+2xh+h^2)-5x-5h+2-3x^2+5x-2)/h#
#f'(x)=lim_(hrarr0)(3x^2+6xh+3h^2-5x-5h+2-3x^2+5x-2)/h#
Cancel terms.
#f'(x)=lim_(hrarr0)(6xh+3h^2-5h)/h#
Factor an
#f'(x)=lim_(hrarr0)(h(6x+3h-5))/h#
#f'(x)=lim_(hrarr0)6x+3h-5#
The limit can be be found by plugging in
#f'(x)=6x+3(0)-5#
#f'(x)=6x-5#