How do you use the definition of a derivative to find the derivative of f(x)=(1/x)-2?

1 Answer
Mar 14, 2016

I found f'(x)=-1/x^2

Explanation:

We use our definition as:
f'(x)=lim_(h->0)(f(x+h)-f(x))/h
where h is a small increment.

In our case:
f'(x)=lim_(h->0)[(1/(x+h)-2)-(1/x-2)]/h=
=lim_(h->0)[(1/(x+h)cancel(-2)-1/xcancel(+2))]/h=
=lim_(h->0)(1/h((cancel(x)cancel(-x)-h)/(x(x+h)))=lim_(h->0)(1/cancel(h)(-cancel(h)/(x(x+h)))=lim_(h->0)(-1/(x(x+h)))=
as h->0
=(-1/(x(x+cancel(h))))=-1/x^2