How do you use the definition of a derivative to find the derivative of f(x)= 2x^2 - 3x+4?

1 Answer
Oct 31, 2016

f'(x) = 4x-3

Explanation:

By definition f'(x) =lim_(hrarr0)( (f(x+h)-f(x))/h )

So, with f(x)=2x^2-3x+4 we have:
f'(x) = lim_(hrarr0)( ( (2(x+h)^2-3(x+h)+4) - (2x^2-3x+4) ) / h )

:. f'(x) = lim_(hrarr0)( ( ( 2(x^2+2hx+h^2)-3x-3h+4) - (2x^2-3x+4) ) /h )

:. f'(x) = lim_(hrarr0)( ( 2x^2+4hx+2h^2-3x-3h+4 - 2x^2+3x-4) /h )

:. f'(x) = lim_(hrarr0)( ( 4hx+2h^2-3h) /h )

:. f'(x) = lim_(hrarr0)( 4x+2h-3 )

:. f'(x) = 4x-3