How do you use the definition of a derivative to find the derivative of f(x) = 3/(x-2) to calculate f'(a)?

1 Answer
Sep 26, 2017

f'(a) = -3/(a-2)^2

Explanation:

By definition of derivative:

f'(a) = lim_(x->a) (1/(x-a))(3/(x-2)-3/(a-2))

f'(a) = lim_(x->a) (1/(x-a))(3(a-2)-3(x-2))/((a-2)(x-2))

f'(a) = lim_(x->a) (1/(x-a))(3a-6-3x+6)/((a-2)(x-2))

f'(a) = lim_(x->a) (1/(x-a))(-3(x-a))/((a-2)(x-2))

f'(a) = lim_(x->a) -3/((a-2)(x-2))

f'(a) = -3/(a-2)^2