How do you use the definition of a derivative to find the derivative of f(x)=4+x-2x^2?

1 Answer
May 12, 2016

(df)/(dx)==1-4x

Explanation:

Derivative of function f(x) is defined as

(df)/(dx)=Lt_(Deltax->0)(f(x+Deltax)-f(x))/(Deltax)

As f(x)=4+x-2x^2

f(x+Deltax)=4+x+Deltax-2(x+Deltax)^2 or

f(x+Deltax)=4+x+Deltax-2(x^2+2xDeltax+(Deltax)^2) or

f(x+Deltax)=4+x+Deltax-2x^2-4xDeltax+2(Deltax)^2

Hence, f(x+Deltax)-f(x)=Deltax-4xDeltax+2(Deltax)^2

i.e. (f(x+Deltax)-f(x))/(Deltax)=1-4x+2Deltax

Hence, (df)/(dx)=Lt_(Deltax->0)(1-4x+2Deltax)=1-4x