How do you use the definition of a derivative to find the derivative of #f(x) = (4+x) / (1-4x)#?

1 Answer
Apr 23, 2016

#f'(x)=17/(1-4x)^2#

Explanation:

The definition of the derivative states that the derivative of the function #f(x)# equals

#f'(x)=lim_(hrarr0)(f(x+h)-f(x))/h#

Thus, when #f(x)=(4+x)/(1-4x)#, we see that

#f'(x)=lim_(hrarr0)((4+x+h)/(1-4x-4h)-(4+x)/(1-4x))/h#

Clear the denominators from the fraction.

#f'(x)=lim_(hrarr0)(((4+x+h)/(1-4x-4h)-(4+x)/(1-4x))/h)((1-4x-4h)(1-4x))/((1-4x-4h)(1-4x))#

#f'(x)=lim_(hrarr0)((4+x+h)(1-4x)-(4+x)(1-4x-4h))/(h(1-4x-4h)(1-4x))#

Distribute:

#f'(x)=lim_(hrarr0)((-4x^2-4hx-15x+h+4)-(-4x^2-4hx-15x-16h+4))/(h(1-4x-4h)(1-4x))#

Cancel like terms (there are a lot):

#f'(x)=lim_(hrarr0)(17h)/(h(1-4x-4h)(1-4x))#

Cancel the #h# terms:

#f'(x)=lim_(hrarr0)17/((1-4x-4h)(1-4x))#

Plug in #0# for #h#, as the limit can now be evaluated.

#f'(x)=17/((1-4x-0)(1-4x))#

#f'(x)=17/(1-4x)^2#