How do you use the definition of a derivative to find the derivative of #f(x) = (4+x) / (1-4x)#?
1 Answer
Explanation:
The definition of the derivative states that the derivative of the function
#f'(x)=lim_(hrarr0)(f(x+h)-f(x))/h#
Thus, when
#f'(x)=lim_(hrarr0)((4+x+h)/(1-4x-4h)-(4+x)/(1-4x))/h#
Clear the denominators from the fraction.
#f'(x)=lim_(hrarr0)(((4+x+h)/(1-4x-4h)-(4+x)/(1-4x))/h)((1-4x-4h)(1-4x))/((1-4x-4h)(1-4x))#
#f'(x)=lim_(hrarr0)((4+x+h)(1-4x)-(4+x)(1-4x-4h))/(h(1-4x-4h)(1-4x))#
Distribute:
#f'(x)=lim_(hrarr0)((-4x^2-4hx-15x+h+4)-(-4x^2-4hx-15x-16h+4))/(h(1-4x-4h)(1-4x))#
Cancel like terms (there are a lot):
#f'(x)=lim_(hrarr0)(17h)/(h(1-4x-4h)(1-4x))#
Cancel the
#f'(x)=lim_(hrarr0)17/((1-4x-4h)(1-4x))#
Plug in
#f'(x)=17/((1-4x-0)(1-4x))#
#f'(x)=17/(1-4x)^2#