How do you use the definition of a derivative to find the derivative of f(x) = 5x + 9 at x=2?

1 Answer
Oct 31, 2016

f'(2) = 5

Explanation:

By definition f'(x) =lim_(hrarr0)( (f(x+h)-f(x))/h )

So, with f(x) = 5x+9 we have:

f'(2) = lim_(hrarr0)( ( f(2+h) - f(2) ) / h )
:. f'(2) = lim_(hrarr0)( ( (5(2+h)+9) - (5(2)+9) ) / h )
:. f'(2) = lim_(hrarr0)( ( (10+5h+9) - (10+9) ) / h )
:. f'(2) = lim_(hrarr0)( ( 10+5h+9 - 10-9 ) / h )
:. f'(2) = lim_(hrarr0)( (5h) / h )
:. f'(2) = lim_(hrarr0)( 5 )
:. f'(2) = 5