How do you use the definition of a derivative to find the derivative of f(x) = 7/(9x)f(x)=79x?

1 Answer
Mar 7, 2016

For all x_0 in RR "\" {0} : f'(x_0) = -7/(9x_0^2).
See answer below.

Explanation:

For all x_0 in RR "\" {0} :

f'(x_0) = lim_(x->x_0)(f(x)-f(x_0))/(x-x_0)

= lim_(x->x_0)((7/(9x))-(7/(9x_0)))/(x-x_0)

= lim_(x->x_0)((7x_0-7x)/(9x*x_0))/(x-x_0)

= lim_(x->x_0)(-7(x-x_0))/((9x*x_0)*(x-x_0))

= lim_(x->x_0)-7/(9x*x_0)

=-7/(9x_0^2).