How do you use the definition of a derivative to find the derivative of f(x)=cosxf(x)=cosx?

1 Answer
Dec 28, 2016

d/(dx) cosx=-sinxddxcosx=sinx

Explanation:

By definition:

f'(x) = lim_(Deltax->0) (f(x+Deltax)-f(x))/(Deltax)

In our case, f(x) = cosx, so:

d/(dx) cosx= lim_(Deltax->0) (cos(x+Deltax)-cos(x))/(Deltax)

We can now use the trigonometric identity:

cos(x+Deltax) = cosxcos(Deltax)-sinxsin(Deltax)

and obtain:

d/(dx) cosx=lim_(Deltax->0)(cosxcos(Deltax)-sinxsin(Deltax)-cosx)/(Deltax)

that is:

d/(dx) cosx=lim_(Deltax->0)cosx(1-cos(Deltax))/(Deltax)-sinx(sin(Deltax))/(Deltax)

But:

lim_(t->0) sint/t=1

and:

lim_(t->0) (1-cost)/t=0

and we can conclude:

d/(dx) cosx=-sinx