How do you use the definition of a derivative to find the derivative of #f(x) = |x|#?
1 Answer
Explanation:
By definition of the derivative
So with
# f'(x) = lim_(h rarr 0) ( |x+h| - |x| ) / h #
# :. f'(x) = lim_(h rarr 0) (( |x+h| - |x| )) / h (( |x+h| + |x| ))/(( |x+h| + |x| )) #
# :. f'(x) = lim_(h rarr 0) ( (|x+h|)^2 -(|x|)^2) / ( h( |x+h| + |x| )) #
# :. f'(x) = lim_(h rarr 0) ( (x+h)^2 -x^2) / ( h( |x+h| + |x| )) #
# :. f'(x) = lim_(h rarr 0) ( x^2+2hx+h^2 -x^2) / ( h( |x+h| + |x| )) #
# :. f'(x) = lim_(h rarr 0) ( 2hx+h^2 ) / ( h( |x+h| + |x| )) #
# :. f'(x) = lim_(h rarr 0) ( 2x+h ) / ( |x+h| + |x| ) #
# :. f'(x) = ( 2x + 0) / ( |x+0| + |x| ) #
# :. f'(x) = ( 2x ) / (2 |x| ) #
# :. f'(x) = x / |x| #
Which if you think about it for a moment, we can write as;
The above maths is actually a lot easier if you go straight to the definition of
And if we graph
graph{|x| [-10, 10, -5, 5]}
As,