How do you use the definition of a derivative to find the derivative of f(x)=x^2-3x-1f(x)=x23x1?

2 Answers
Mar 13, 2016

f'(x)=2x-3

Explanation:

The definition of the derivative is:
f'(x)=lim_(h->0)(f(x+h)-f(x))/h

Applying this to the problem:
f'(x)=lim_(h->0)((x+h)^2-3(x+h)-1-(x^2-3x-1))/h
f'(x)=lim_(h->0)(x^2+2xh+h^2-3x-3h-1-x^2+3x+1)/h
f'(x)=lim_(h->0)(2xh+h^2-3h)/h
f'(x)=lim_(h->0)(h(2x+h-3))/h
f'(x)=lim_(h->0)2x+h-3
f'(x)=2x+(0)-3=2x-3

Mar 13, 2016

(df(x))/dx=2x-3

Explanation:

Definition of derivative is given by

(df(x))/dx=Lt_(deltax->0)(f(x+deltax)-f(x))/(deltax)

As f(x)=x^2-3x-1, hence

f(x+deltax)-f(x)=(x+deltax)^2-3(x+deltax)-1-(x^2-3x-1)

= (x^2+2xdeltax+(deltax)^2-x^2)-3(x+deltax-x)-1+1

= (2xdeltax+(deltax)^2)-3(deltax) and

f((x+deltax)-f(x))/(deltax)=2x-3+deltax

Hence, Lt_(deltax->0)(f(x+deltax)-f(x))/(deltax)

= Lt_(deltax->0)(2x-3+deltax) i.e.

(df(x))/dx=2x-3