How do you use the definition of a derivative to find the derivative of f(x)=-x^3-2x^2+3x+6?

1 Answer
Nov 19, 2017

(df)/(dx)=-3x^2-4x+3

Explanation:

We have f(x)=-x^3-2x^2+3x+6

hence f(x+h)=-(x+h)^3-2(x+h)^2+3(x+h)+6

and therefore f(x+h)-f(x)

= -(x+h)^3-2(x+h)^2+3(x+h)+6-(-x^3-2x^2+3x+6)

= -x^3-3hx^2-3h^2x-h^3-2x^2-4hx-2h^2+3x+3h+x^3+2x^2-3x-6

= -cancel(x^3)-3hx^2-3h^2x-h^3-cancel(2x^2)-4hx-2h^2+cancel(3x)+3h+cancel6 +cancel(x^3)+cancel(2x^2)-cancel(3x)-cancel6

= -3hx^2-3h^2x-h^3-4hx-2h^2+3h

Hence (df)/(dx)=lim_(h->0)(f(x+h)-f(x))/h

= lim_(h->0)(-3hx^2-3h^2x-h^3-4hx-2h^2+3h)/h

= lim_(h->0)(-3x^2-3hx-h^2-4x-2h+3)

= -3x^2-4x+3