How do you use the definition of a derivative to find the derivative of f(x)=x^3+5x^2+6?

1 Answer
Mar 1, 2017

(df(x))/(dx)=3x^2+10x

Explanation:

As per definition of a derivative of function f(x),

(df(x))/(dx)=Lt_(h->0)(f(x+h)-f(x))/h

Here f(x)=x^3+5x^2+6 and hence

f(x+h)=(x+h)^3+5(x+h)^2+6 and

f(x+h)-f(x)=(x+h)^3+5(x+h)^2ul(+6)-x^3-5x^2ul(-6)

= x^3+3x^2h+3xh^2+h^3+5(x^2+2hx+h^2)-x^3-5x^2

= ul(x^3)+3x^2h+3xh^2+h^3+ul(5x^2)+10hx+5h^2ul(-x^3-5x^2)

= 3x^2h+3xh^2+h^3+10hx+5h^2 and

(df(x))/(dx)=Lt_(h->0)(3x^2h+3xh^2+h^3+10hx+5h^2)/h

= Lt_(h->0)3x^2+3xh+h^2+10x+5h

= 3x^2+10x