How do you use the definition of a derivative to find the derivative of f(x)=(x-6)^(2/3)f(x)=(x6)23, at c=6?

1 Answer
May 4, 2016

f'(6) does not exist. For how to use the definition, see below. (Warning: It takes a lot of algebra to use the definition to get f'(x) for this function.)

Explanation:

For f(x) = (x-6)^(2/3), we need some algebra to use the definition of derivative to find f'(x)

f'(x) = lim_(hrarr0) (f(x+h)-f(x))/h

= lim_(hrarr0) ((x+h-6)^(2/3)-(x-6)^(2/3))/h

= lim_(hrarr0) (root(3)((x+h-6)^2)-root(3)((x-6)^2))/h.

Obviously (and as expected) this limit has initial form 0/0.
We will write the difference quotient so that the numerator contains no radicals. (Often called "rationalizing" the numerator.)
Our goal is to get rid of the h in the denominator.

Algebra needed

The sum of two cubes can be factored:

u^3+v^3 = (u+v)(u^2-uv+v^2).

(If you didn't learn this in algebra class, learn it now.)

In this question, we have 3^"rd" roots, so we need:

a+b = (root3a+root3b)(root3a^2-root3a root3b+root3b^2)

= (root3a+root3b)(root3a^2-root3(ab)+root3b^2)

To make matters more interesting, we actually have 3^"rd" roots of squares. So we need:

a^2+b^2 = (root3(a^2)+root3(b^2))(root3(a^2)^2-root3(a^2) root3(b^2)+root3(b^2)^2)

= (root3(a^2)+root3(b^2))(root3(a^2)^2-root3(a^2b^2)+root3(b^2)^2)

We also will use

((x+h)-6)^2 = (x+h)^2 - 12(x+h)+36

= x^2+2xh+h^2-12x-12h+36

And, of course (x-6)^2 = x^2-12x+36

For the derivative

We'll use the algebra discussed above to rewrite the difference quotient.
We have a=(x+h-6) and b=(x-6).

We write:

(root(3)((x+h-6)^2)-root(3)((x-6)^2))/h

= ((root(3)((x+h-6)^2)-root(3)((x-6)^2)))/h*((root(3)((x+h-6)^2)^2 -root3((x+h-6)^2(x-6)^2)+root(3)((x-6)^2)^2))/((root(3)((x+h-6)^2)^2 -root3((x+h-6)^2(x-6)^2)+root(3)((x-6)^2)^2))

= ((x+h-6)^2-(x+6)^2)/(h(root(3)((x+h-6)^2)^2 -root3((x+h-6)^2(x-6)^2)+root(3)((x-6)^2)^2))

= ((x^2+2xh+h^2-12x-12h+36)-(x^2-12x+36))/(h(root(3)((x+h-6)^2)^2 -root3((x+h-6)^2(x-6)^2)+root(3)((x-6)^2)^2))

= ((x^2+2xh+h^2-12x-12h+36)-(x^2-12x+36))/(h(root(3)((x+h-6)^2)^2 -root3((x+h-6)^2(x-6)^2)+root(3)((x-6)^2)^2))

= (2xh+h^2-12h)/(h(root(3)((x+h-6)^2)^2 -root3((x+h-6)^2(x-6)^2)+root(3)((x-6)^2)^2))

= (cancel(h)(2x+h-12))/(cancel(h)(root(3)((x+h-6)^2)^2 -root3((x+h-6)^2(x-6)^2)+root(3)((x-6)^2)^2))

Now we can evaluate the limit as hrarr0 to get

f'(x) = lim_(hrarr0)((2x+h-12))/((root(3)((x+h-6)^2)^2 -root3((x+h-6)^2(x-6)^2)+root(3)((x-6)^2)^2))

= (2x-12)/((root(3)((x-6)^2)^2 -root3((x-6)^2(x-6)^2)+root(3)((x-6)^2)^2))

= (2x-12)/(root(3)(x-6)^4 -root3(x-6)^4+root(3)((x-6)^4))

= (2(x-6))/(3root(3)(x-6)^4) = (2(x-6))/(3(x-6)root(3)(x-6)) = 2/(3root3(x-6))

At x=6, the derivative f'(x) does not exist.