How do you use the definition of a derivative to find the derivative of sqrt(2x)?

1 Answer
Nov 19, 2016

f'(x)=1 / ( sqrt(2x) )

Explanation:

By definition of the derivative f'(x)=lim_(h rarr 0) ( f(x+h)-f(x) ) / h
So with f(x) = sqrt(2x) we have;

f'(x)=lim_(h rarr 0) ( sqrt(2(x+h)) - sqrt(2x) ) / h
:. f'(x)=lim_(h rarr 0) ( sqrt(2x+2h) - sqrt(2x) ) / h
:. f'(x)=lim_(h rarr 0) ( sqrt(2x+2h) - sqrt(2x) ) / h * ( sqrt(2x+2h) + sqrt(2x) )/( sqrt(2x+2h) + sqrt(2x) )
:. f'(x)=lim_(h rarr 0) ( 2x+2h - 2x ) / (h( sqrt(2x+2h) + sqrt(2x) ))
:. f'(x)=lim_(h rarr 0) ( 2h ) / (h( sqrt(2x+2h) + sqrt(2x) ))
:. f'(x)=lim_(h rarr 0) 2 / ( sqrt(2x+2h) + sqrt(2x) )
:. f'(x)=2 / ( 2sqrt(2x) )
:. f'(x)=1 / ( sqrt(2x) )