How do you use the definition of a derivative to show that if f(x)=1/xf(x)=1x then f'(x)=-1/x^2?

1 Answer
Oct 16, 2016

This is a proof

Explanation:

By definition:
f'(x) = lim_(h->0)(f(x+h)-f(x))/h

so, with f(x)=1/x we have:

f'(x) = lim_(h->0)((1/(x+h)-1/x))/h

= lim_(h->0)((x-(x-h))/(x(x+h)))/h

= lim_(h->0)((x-x-h)/(x(x+h)))/h

= lim_(h->0)((-h)/(x(x+h)))/h

= lim_(h->0)(-1)/(x(x+h))

= lim_(h->0)(-1)/(x^2+xh)

= -1/(x^2) QED