How do you use the definition of derivative in terms of limits, prove that the derivative of x^n = nx^(n-1)?

2 Answers
Apr 29, 2015

Definition of Derivative
f'(x) = lim_(hrarr 0) (f(x+h)-f(x))/h

For f(x) = x^n

lim_(hrarr0) ((x+h)^n - x^n)/h

lim_(hrarr0) (x^n +nh^1x^(n-1) + h^2(...) -x^n)/h

lim_(harr0) nx^(n-1) + h(...)

= nx^(n-1)

Apr 29, 2015

Using the alternative definition of derivative:

f'(a) = lim_(xrarra) (f(x)-f(a))/(x-a)

For f(x) = x^n with n a positive integer:

Note that:
x^n-a^n = (x-a)(x^(n-1)+x^(n-2)a+x^(n-3)a^2 + * * * +xa^(n-2)+a^(n-1))

So:

f'(a) = lim_(xrarra) (f(x)-f(a))/(x-a)

color(white)"sssss" = lim_(xrarra) (x^n-a^n)/(x-a)

=lim_(xrarra) ((x-a)(x^(n-1)+x^(n-2)a+x^(n-3)a^2 + * * * +xa^(n-2)+a^(n-1)))/(x-a)

=lim_(xrarra) (x^(n-1)+x^(n-2)a+x^(n-3)a^2 + * * * +xa^(n-2)+a^(n-1))

=a^(n-1)+a^(n-2)a+a^(n-3)a^2 + * * * +aa^(n-2)+a^(n-1)

There are n factor, each of which has limit a^(n-1), so the limit is

f'(a) = na^(n-1)

Because this holds for arbitrary a, it holds for all x and

f'(x) = nx^(n-1)