Using the alternative definition of derivative:
f'(a) = lim_(xrarra) (f(x)-f(a))/(x-a)
For f(x) = x^n with n a positive integer:
Note that:
x^n-a^n = (x-a)(x^(n-1)+x^(n-2)a+x^(n-3)a^2 + * * * +xa^(n-2)+a^(n-1))
So:
f'(a) = lim_(xrarra) (f(x)-f(a))/(x-a)
color(white)"sssss" = lim_(xrarra) (x^n-a^n)/(x-a)
=lim_(xrarra) ((x-a)(x^(n-1)+x^(n-2)a+x^(n-3)a^2 + * * * +xa^(n-2)+a^(n-1)))/(x-a)
=lim_(xrarra) (x^(n-1)+x^(n-2)a+x^(n-3)a^2 + * * * +xa^(n-2)+a^(n-1))
=a^(n-1)+a^(n-2)a+a^(n-3)a^2 + * * * +aa^(n-2)+a^(n-1)
There are n factor, each of which has limit a^(n-1), so the limit is
f'(a) = na^(n-1)
Because this holds for arbitrary a, it holds for all x and
f'(x) = nx^(n-1)