How do you use the formal definition to find the derivative of y=1-x^3y=1x3 at x=2?

1 Answer
Aug 21, 2015

That depends on which formal definition of the derivative at x=ax=a you are using.

Explanation:

Using definition lim_(hrarr0)(f(2+h)-f(2))/h

lim_(hrarr0)(f(2+h)-f(2))/h = lim_(hrarr0)([1-(2+h)^3]-[1-(2)^3])/h

= lim_(hrarr0)([1-(8+12h+6h^2+h^3)]-[1-8])/h " "See Note below

= lim_(hrarr0)(-12h-6h^2-h^3)/h

= lim_(hrarr0)(h(-12-6h-h^2))/h

= lim_(hrarr0)(-12-6h-h^2)

= -12

Note: expand (2+h)^3 using the binomial expansion or by multiplying (2+h)(2+h)(2+h)

Using definition lim_(xrarr2)(f(x)-f(2))/(x-2)

lim_(xrarr2)(f(x)-f(2))/(x-2) = lim_(xrarr2)([1-x^3]-[1-2^3])/(x-2)

= lim_(xrarr2)(-x^3+8)/(x-2)

= lim_(xrarr2)(-(x^3-8))/(x-2)

= lim_(xrarr2)(-(x-2)(x^2+2x+4))/(x-2)

= lim_(xrarr2)-(x^2+2x+4)

= -12