How do you use the limit definition of the derivative to find the derivative of f(x)=x/(x+1)f(x)=xx+1?
1 Answer
See below for two possible solutions.
Explanation:
Soultion 1
**Using: **
If we try substitution, we get the indeterminate form
= lim_(hrarr0)(((x+h)(x+1)-x(x+h+1))/((x+h+1)(x+1))) / (h/1)
= lim_(hrarr0)(((x^2+x+xh+h-x^2-xh-x))/((x+h+1)(x+1))) / (h/1)
= lim_(hrarr0)((h)/((x+h+1)(x+1))) / (h/1)
= lim_(hrarr0)((h)/(x+h+1)(x+1)) * 1/h
= lim_(hrarr0) 1/((x+h+1)(x+1)) .
Now, when we evaluate, we do not get
= 1/(x+1)^2 .
Solution 2
Using
If we try substitution, we get the indeterminate form
= lim_(trarrx)((t(x+1)-x(t+1))/((t+1)(x+1))) / ((t-x)/1)
= lim_(trarrx)(((tx+t-tx-x))/((t+1)(x+1))) / ((t-x)/1)
= lim_(trarrx)((t-x)/((t+1)(x+1))) / ((t-x)/1)
= lim_(trarrx)(t-x)/((t+1)(x+1)) * 1/(t-x)
= lim_(trarrx) 1/((t+1)(x+1)) .
Now, when we evaluate, we do not get
= 1/(x+1)^2 .