How do you use the limit definition of the derivative to find the derivative of f(x)=x/(x+1)f(x)=xx+1?

1 Answer
Sep 18, 2016

See below for two possible solutions.

Explanation:

Soultion 1

**Using: ** f'(x) = lim_(hrarr0)(f(x+h)-f(x))/h

f'(x) = lim_(hrarr0)([(x+h)/(x+h+1)]-[x/(x+1)])/h

If we try substitution, we get the indeterminate form 0/0. Let's get a single fraction on top over h/1, then multiply the top by the reciprocal of the bottom (invert and multiply).

= lim_(hrarr0)(((x+h)(x+1)-x(x+h+1))/((x+h+1)(x+1))) / (h/1)

= lim_(hrarr0)(((x^2+x+xh+h-x^2-xh-x))/((x+h+1)(x+1))) / (h/1)

= lim_(hrarr0)((h)/((x+h+1)(x+1))) / (h/1)

= lim_(hrarr0)((h)/(x+h+1)(x+1)) * 1/h

= lim_(hrarr0) 1/((x+h+1)(x+1)) .

Now, when we evaluate, we do not get 0 in the denominator, so the limit is

= 1/(x+1)^2 .

f'(x) = 1/(x+1)^2 .

Solution 2

Using f'(x) = lim_(trarrx)(f(t)-f(x))/(t-x)

lim_(trarrx)(f(t)-f(x))/(t-x) = lim_(trarrx)([t/(t+1)]-[x/(x+1)])/(t-x)

If we try substitution, we get the indeterminate form 0/0. Let's get a single fraction on top over (t-x)/1, then multiply the top by the reciprocal of the bottom (invert and multiply).

= lim_(trarrx)((t(x+1)-x(t+1))/((t+1)(x+1))) / ((t-x)/1)

= lim_(trarrx)(((tx+t-tx-x))/((t+1)(x+1))) / ((t-x)/1)

= lim_(trarrx)((t-x)/((t+1)(x+1))) / ((t-x)/1)

= lim_(trarrx)(t-x)/((t+1)(x+1)) * 1/(t-x)

= lim_(trarrx) 1/((t+1)(x+1)) .

Now, when we evaluate, we do not get 0 in the denominator, so the limit is

= 1/(x+1)^2 .

f'(x) = 1/(x+1)^2 .