How do you use the limit definition of the derivative to find the derivative of f(x)=sqrtx?

1 Answer
Jul 23, 2016

f'(x) = 1/(2sqrt(x))

Explanation:

f'(x) = lim_(Deltaxrarr0) (f(x+Deltax) - f(x))/(Deltax)

f'(x) = lim_(Deltaxrarr0) (sqrt(x+Deltax) - sqrt(x))/(Deltax)

f'(x) = lim_(Deltaxrarr0) (sqrt(x+Deltax) - sqrt(x))/(Deltax) * (sqrt(x+Deltax) + sqrt(x))/(sqrt(x+Deltax) + sqrt(x))

f'(x) = lim_(Deltaxrarr0) (cancel(Deltax))/(cancel(Deltax)(sqrt(x+Deltax) + sqrt(x))

f'(x) = lim_(Deltaxrarr0) 1/(sqrt(x+Deltax) + sqrt(x)) = 1/(2sqrt(x))