How do you use the limit definition of the derivative to find the derivative of f(x)=2x^2-3x+6f(x)=2x23x+6?

2 Answers
Feb 12, 2017

(df(x))/(dx) = 2x+3df(x)dx=2x+3
(see below for method of derivation)

Explanation:

Given a function f(x)f(x), the derivative of f(x)f(x) is defined as:
color(white)("XXX")(df(x))/dx=lim_(hrarr0) (f(x+h)-f(x))/h

If f(x)=2x^2-3x+6
then f(x+h)= 2(x+h)^2-3(x+h)+6
color(white)("XXXXXXXX")=2x^2+2xh+h^2-3x-3h+6
So
f(x+h)-f(x) = color(white)("XX")2x^2+2xh+h^2-3x-3h+6
color(white)("XXXXXXXXXXX")-(underline(2x^2color(white)("XXXXXXX")-3xcolor(white)("XXX")+6))
color(white)("XXXXXXXXX")=color(white)("XXXXXX")2xh+h^2color(white)("XXX")+3h

and
color(white)("XXX")(f(x+h)-f(x))/h = 2x+h+3

Therefore
color(white)("XXX")(df(x))/(dx)=lim_(hrarr0) 2x+h+3 = 2x+3

Feb 12, 2017

Evaluate the limit of the expression lim_(h->0) (f(x + h) -f(x))/(h)

Explanation:

So lim_(h->0) ((2(x+h)^2 - 3(x+h) + 6) -f(3x^2 - 3x +6))/(h)