The limit definition is the formula f'(x) = lim_(h -> 0) (f(x + h) - f(x))/h.
f'(x) = lim_(h->0)(4/(x + h - 3) - 4/(x - 3))/h
This involves lots of algebra--brace yourself!
f'(x) = lim_(h->0)((4(x - 3))/((x + h -3)(x - 3)) - (4(x + h - 3))/((x - 3)(x + h - 3)))/h
f'(x) = lim_(h->0) ((4x - 12 - 4x - 4h + 12)/((x + h -3)(x- 3)))/h
f'(x) = lim_(h->0) ((-4h)/((x + h - 3)(x - 3)))/h
f'(x) = lim_(h->0)(-4h)/((x + h - 3)(x - 3)(h))
f'(x) = lim_(h->0)(-4)/((x + h - 3)(x - 3))
We can now substitute h =0 into the expression.
f'(x) = -4/((x + 0 - 3)(x- 3))
f'(x) = -4/((x - 3)(x - 3))
f'(x) = -4/(x - 3)^2
Hopefully this helps!