How do you use the limit definition of the derivative to find the derivative of #f(x)=sqrt(x+8)+3x#?
1 Answer
Explanation:
The definition of the derivative of
# f'(x)=lim_(h rarr 0) ( f(x+h)-f(x) ) / h #
So with
# \ \ \ \ \ f(x+h) = sqrt((x+h)+8)+3(x+h) #
# :. f(x+h) = sqrt(x+h+8)+3x+3h #
So Then the numerator of the derivative is:
And so the derivative of
# \ \ \ \ \ f'(x) = lim_(h rarr 0) ( f(x+h)-f(x) ) / h #
# " " = lim_(h rarr 0) ( (h)/(sqrt(x+h+8) + sqrt(x+8)) +3h) / h #
# " " = lim_(h rarr 0) ( 1/(sqrt(x+h+8) + sqrt(x+8)) +3) #
# " " = 1/(sqrt(x+8) + sqrt(x+8)) +3 #
# :. f'(x) = 1/(2sqrt(x+8)) +3 #