How do you use the limit definition of the derivative to find the derivative of f(x)=sqrt(4x-5)?

1 Answer
Feb 28, 2017

d/dx( sqrt(4x-5)) = 2/ sqrt(4x-5)

Explanation:

By definition of derivative we have:

f'(x) = lim_(h->0) (f(x+h)-f(x))/h

so:

d/dx( sqrt(4x-5)) = lim_(h->0) (sqrt(4(x+h)-5)-sqrt(4x-5))/h

rationalize the numerator using the identity:

a^2-b^2 =(a-b)(a+b)

d/dx( sqrt(4x-5)) = lim_(h->0) ((sqrt(4(x+h)-5)-sqrt(4x-5))/h)( (sqrt(4(x+h)-5)+sqrt(4x-5))/(sqrt(4(x+h)-5)+sqrt(4x-5)))

d/dx( sqrt(4x-5)) = lim_(h->0) (4(x+h)-5-(4x-5))/(h (sqrt(4(x+h)-5)+sqrt(4x-5))

d/dx( sqrt(4x-5)) = lim_(h->0) (cancel(4x)+4h-cancel5-cancel(4x)+cancel5)/(h (sqrt(4(x+h)-5)+sqrt(4x-5))

d/dx( sqrt(4x-5)) = lim_(h->0) (4cancelh)/(cancelh (sqrt(4(x+h)-5)+sqrt(4x-5))

d/dx( sqrt(4x-5)) = lim_(h->0) 4/ (sqrt(4(x+h)-5)+sqrt(4x-5)

d/dx( sqrt(4x-5)) = 2/ sqrt(4x-5)