How do you use the limit definition of the derivative to find the derivative of f(x)=-2/(2x-1)?

1 Answer
Jan 5, 2017

dy/dx = (4)/((2x-1)^2)

Explanation:

The definition of the derivative of y=f(x) is

f'(x)=lim_(h rarr 0) ( f(x+h)-f(x) ) / h

So if f(x) = -2/(2x-1) then;

\ \ \ \ \ f(x+h) = -2/(2(x+h)-1)
:. f(x+h) = -2/(2x+2h-1)

The numerator of the derivative will then be given by:

f(x+h) -f(x)= -2/(2x+2h-1) - (-2/(2x-1))
" "= 2 (-1/(2x+2h-1) + 1/(2x-1))
" "= 2 ((-(2x-1) + (2x+2h-1))/((2x-1)(2x+2h-1)))
" "= 2 ((-2x+1 + 2x+2h-1)/((2x-1)(2x+2h-1)))
" "= 2 ((2 + 2h)/((2x-1)(2x+2h-1)))

And so the derivative of y=f(x) is given by:

\ \ \ \ \ dy/dx = lim_(h rarr 0) (2 ((2 + 2h)/((2x-1)(2x+2h-1)))) / h
" " = lim_(h rarr 0) 2/h((2h)/((2x-1)(2x+2h-1)))
" " = lim_(h rarr 0) (4)/((2x-1)(2x+2h-1))
" " = (4)/((2x-1)(2x+0-1))
:. dy/dx = (4)/((2x-1)^2)