How do you use the limit definition to find the derivative of f(x)=1/(4x-3)?

1 Answer
Jan 9, 2017

f'(x) = lim_(Deltax->0) (Deltaf)/(Deltax) =(-4)/((4x-3)^2)

Explanation:

The definition of the derivative of f(x) is:

f'(x) = lim_(Deltax->0) (f(x+Deltax)-f(x))/(Deltax)= lim_(Deltax->0) (Deltaf)/(Deltax)

Let us calculate the increment of f(x):

Deltaf = 1/(4(x+Deltax)-3) -1/(4x-3)

Deltaf = (4x-3-4x-4Deltax+3)/((4x+4Deltax-3)(4x-3))=(-4Deltax)/((4x+4Deltax-3)(4x-3))

So:

(Deltaf)/(Deltax) =(-4)/((4x+4Deltax-3)(4x-3))

and

lim_(Deltax->0) (Deltaf)/(Deltax) =(-4)/((4x-3)^2)