How do you use the limit definition to find the derivative of f(x)=2/(5x+1)^3?

1 Answer
May 29, 2017

d/dx (2/(5x+1)^3) = - 10 /((5x+1)^4)

Explanation:

By definition:

f'(x) = lim_(h->0) (f(x+h)-f(x))/h

so:

d/dx (2/(5x+1)^3) = lim_(h->0) 2/h(1/(5(x+h)+1)^3-1/(5x+1)^3)

regroup the binomials at the denominator

d/dx (2/(5x+1)^3) = lim_(h->0) 2/h(1/((5x+1)+5h)^3-1/(5x+1)^3)

Perform the difference:

d/dx (2/(5x+1)^3) = lim_(h->0) 2/h( ( (5x+1)^3 - ((5x+1)+5h)^3 )/(((5x+1)+5h)^3(5x+1)^3))

Expand now the power of the second binomial at the numerator:

d/dx (2/(5x+1)^3) = lim_(h->0) 2/h( ( (5x+1)^3 - (5x+1)^3 - 5h(5x+1)^2 - 25h^2(5x+1) -125h^3 )/(((5x+1)+5h)^3(5x+1)^3))

The first two terms cancel each other:

d/dx (2/(5x+1)^3) = lim_(h->0) -2/h( ( 5h(5x+1)^2 + 25h^2(5x+1) +125h^3 )/(((5x+1)+5h)^3(5x+1)^3))

Simplifying h and separating the terms:

d/dx (2/(5x+1)^3) = lim_(h->0) -( 10(5x+1)^2 )/(((5x+1)+5h)^3(5x+1)^3)-lim_(h->0) -( 50h(5x+1) )/(((5x+1)+5h)^3(5x+1)^3)-lim_(h->0) - ( 250h^2)/(((5x+1)+5h)^3(5x+1)^3)

The last two limits are zero, so:

d/dx (2/(5x+1)^3) = -( 10(5x+1)^2 )/((5x+1)^6) = - 10 /((5x+1)^4)