How do you use the limit definition to find the derivative of f(x)=2x+4?

1 Answer
Oct 21, 2016

f'(x)=2(x+4)2

Explanation:

def of derivative

f'(x)=limh0f(x+h)f(x)h

Substitution

f'(x)=limh02x+h+42x+4h

Common Denominator

f'(x)=limh02(x+4)(x+4)(x+h+4)2(x+h+4)(x+4)(x+h+4)h

Distribute and write as a single numerator

f'(x)=limh02x+8(x+4)(x+h+4)2x+2h+8(x+4)(x+h+4)h

f'(x)=limh02x+82x2h8(x+4)(x+h+4)h

Simplify

f'(x)=limh02x+82x2h8(x+4)(x+h+4)h

f'(x)=limh02h(x+4)(x+h+4)h

Multiply by the reciprocal

f'(x)=limh02h(x+4)(x+h+4)(1h)

f'(x)=limh02hh(x+4)(x+h+4)

Simplify

f'(x)=limh02hh(x+4)(x+h+4)

f'(x)=limh02(x+4)(x+h+4)

Now we can substitute in a 0 for h

f'(x)=2(x+4)(x+0+4)

Simplify

f'(x)=2(x+4)(x+4)

Simplify

f'(x)=2(x+4)2

Watch this tutorial to see a similar question solved used the same methods.