Use the formula f'(x) = lim_(h->0) (f(x + h) - f(x))/h.
f'(x) = lim_(h->0) (sqrt(3 - 2(x + h)) - sqrt(3 - 2x))/h
f'(x) = lim_(h->0) (sqrt(3 - 2x - 2h) - sqrt(3 - 2x))/h
Multiply the entire expression by the conjugate of the numerator, which is sqrt(3 - 2x - 2h) + sqrt(3 - 2x).
f'(x) = lim_(h->0) (sqrt(3 - 2x - 2h) - sqrt(3 - 2x))/h * (sqrt(3 - 2x - 2h) + sqrt(3 - 2x))/(sqrt(3 - 2x - 2h) + sqrt(3 - 2x))
This creates a difference of squares and gets rid of the √'s in the numerator.
f'(x) = lim_(h->0) (3 - 2x - 2h- (3 - 2x))/(h(sqrt(3 - 2x - 2h) + sqrt(3 - 2x))
f'(x) = lim_(h->0) (-2h)/(h(sqrt(3- 2x - 2h) + sqrt(3 - 2x))
f'(x) = lim_(h-> 0) -2/(sqrt(3 - 2x - 2h) + sqrt(3 - 2x)
You can now use substitution to evaluate.
f'(x) = -2/(sqrt(3 - 2x - 2(0)) + sqrt(3 - 2x))
f'(x) = -2/(sqrt(3 - 2x) + sqrt(3 - 2x)
f'(x) = -2/(2sqrt(3 - 2x)
f'(x) = -1/sqrt(3 - 2x)
If you were to check this using the chain rule, you would get the same result.
Hopefully this helps!