How do you use the limit definition to find the derivative of f(x)=sqrt(x+1)f(x)=x+1?

1 Answer
Nov 23, 2016

f'(x)=( 1 ) / ( 2sqrt(x+1) )

Explanation:

By definition of the derivative f'(x)=lim_(h rarr 0) ( f(x+h)-f(x) ) / h
So with f(x) = sqrt(x+1) we have;

f'(x)=lim_(h rarr 0) ( sqrt((x+h)+1) - sqrt(x+1) ) / h
:. f'(x)=lim_(h rarr 0) ( sqrt(x+h+1) - sqrt(x+1) ) / h * ( sqrt(x+h+1) + sqrt(x+1) )/( sqrt(x+h+1) + sqrt(x+1) )

:. f'(x)=lim_(h rarr 0) ( (x+h+1) - (x+1) ) / (h * ( sqrt(x+h+1) + sqrt(x+1) ))
:. f'(x)=lim_(h rarr 0) ( h ) / (h * ( sqrt(x+h+1) + sqrt(x+1) ))
:. f'(x)=lim_(h rarr 0) ( 1 ) / ( sqrt(x+h+1) + sqrt(x+1) )
:. f'(x)=( 1 ) / ( sqrt(x+1) + sqrt(x+1) )
:. f'(x)=( 1 ) / ( 2sqrt(x+1) )