How do you use the limit definition to find the derivative of f(x)=x^2-15x+7?

1 Answer
Jan 2, 2017

Expand, reduce and evaluate the limit.

Explanation:

I'll use f'(x) = lim_(hrarr0)(f(x+h)-f(x))/h

Long version explanation

For f(x) = x^2-15x+7,

notice that f(x+h) = (x+h)^2-15(x+h)+7.

f'(x) = lim_(hrarr0)(f(x+h)-f(x))/h

= lim_(hrarr0)(((x+h)^2-15(x+h)+7)-(x^2-15x+7))/h

Notice that, if we try to evaluate by substitutiton, we get the indeterminate form 0/0.

Expand the numerator:
(note (x+h)^2 = x^2+2xh+h^2 " " use FOIL if you need to)

= lim_(hrarr0)((x^2+2xh+h^2-15x-15h+7)-(x^2-15x+7))/h

= lim_(hrarr0)((x^2+2xh+h^2-15x-15h+7-x^2+15x-7))/h

Now, some of the terms in the numerator add to 0

= lim_(hrarr0)((color(red)(x^2)+2xh+h^2 color(green)(-15x) -15hcolor(blue)(+7) color(red)(-x^2) color(green)(+15x)color(blue)(-7)))/h

= lim_(hrarr0)(2xh+h^2-15h)/h

We still get 0/0, but we can factor and reduce

= lim_(hrarr0)(cancel(h)(2x+h-15))/cancel(h)_1

= lim_(hrarr0)(2x+h-15)

And now we can evaluate the limit

= 2x+(0)-15 = 2x-15

So, f'(x) = 2x-15

Short version

f'(x) = lim_(hrarr0)(f(x+h)-f(x))/h

= lim_(hrarr0)(((x+h)^2-15(x+h)+7)-(x^2-15x+7))/h

= lim_(hrarr0)((x^2+2xh+h^2-15x-15h+7-x^2+15x-7))/h

= lim_(hrarr0)(2xh+h^2-15h)/h

= lim_(hrarr0)(2x+h-15)

= 2x-15