How do you use the limit definition to find the derivative of f(x)=x^2-15x+7?
1 Answer
Expand, reduce and evaluate the limit.
Explanation:
I'll use
Long version explanation
For
notice that
= lim_(hrarr0)(((x+h)^2-15(x+h)+7)-(x^2-15x+7))/h
Notice that, if we try to evaluate by substitutiton, we get the indeterminate form
Expand the numerator:
(note
= lim_(hrarr0)((x^2+2xh+h^2-15x-15h+7)-(x^2-15x+7))/h
= lim_(hrarr0)((x^2+2xh+h^2-15x-15h+7-x^2+15x-7))/h
Now, some of the terms in the numerator add to
= lim_(hrarr0)((color(red)(x^2)+2xh+h^2 color(green)(-15x) -15hcolor(blue)(+7) color(red)(-x^2) color(green)(+15x)color(blue)(-7)))/h
= lim_(hrarr0)(2xh+h^2-15h)/h
We still get
= lim_(hrarr0)(cancel(h)(2x+h-15))/cancel(h)_1
= lim_(hrarr0)(2x+h-15)
And now we can evaluate the limit
= 2x+(0)-15 = 2x-15
So,
Short version
= lim_(hrarr0)(((x+h)^2-15(x+h)+7)-(x^2-15x+7))/h
= lim_(hrarr0)((x^2+2xh+h^2-15x-15h+7-x^2+15x-7))/h
= lim_(hrarr0)(2xh+h^2-15h)/h
= lim_(hrarr0)(2x+h-15)
= 2x-15