How do you use the limit definition to find the derivative of y=-1/(x-1)y=1x1?

1 Answer
Aug 3, 2016

f'(x) = ( 1)/((x-1)^2

Explanation:

f'(x) = lim_(h to 0) (f(x+h) - f(x))/(h)

here

f'(x) = lim_(h to 0) 1/h * ( - 1/((x+h)-1) - (- 1/(x-1)))

f'(x) = lim_(h to 0) 1/h * ( 1/(x-1) - 1/(x+h-1) )

f'(x) = lim_(h to 0) 1/h * ( (x+h)-1 - (x-1))/((x-1)(x+h-1)

f'(x) = lim_(h to 0) 1/h * ( h)/((x-1)(x+h-1)

f'(x) = lim_(h to 0) 1/((x-1)(x+h-1)

f'(x) = ( 1)/((x-1)(x-1)

f'(x) = ( 1)/((x-1)^2