How do you use the limit definition to find the derivative of y=1/(x+2)?

1 Answer
Nov 13, 2016

Use the formula f'(x) = lim_(h->0) (f(x + h) - f(x))/h.

f'(x) =lim_(h->0) (1/(x + h + 2) - 1/(x +2))/h

f'(x) = lim_(h-> 0) ((x + 2)/((x + 2)(x + h + 2)) - (x+ h + 2)/((x + 2)(x + h + 2)))/h

f'(x) = lim_(h->0) ((x + 2 - x - h - 2)/((x + 2)(x + h + 2)))/h

f'(x) = lim_(h->0) (-h)/((x+ 2)(x + h + 2)) xx 1/h

f'(x) = lim_(h->0) -1/((x + 2)(x + h + 2))

We can now substitute directly.

f'(x) = -1/((x+ 2)(x + 0 + 2))

f'(x) = -1/(x + 2)^2

Verification with the quotient rule yields the same result:

Letting f(x) = (g(x))/(h(x)) with g(x) = 1 and h(x) = x + 2, f'(x) is given by f'(x) = (g'(x) xx h(x) - g(x) xx h'(x))/(h(x))^2.

Calculating, we have:

f'(x) = (0(x + 2) - 1(1))/(x + 2)^2

f'(x) = -1/(x + 2)^2, which is the answer we obtained previously.

Hopefully this helps!